[スポンサーリンク]

B

ブラウンヒドロホウ素化反応 Brown Hydroboration

[スポンサーリンク]

 

アルケン→アルコール
アルキン→アルデヒド、アルケン

 

概要

  • B-H結合のオレフィンへの位置・立体選択的syn-付加と、引き続くH2O2/NaOH酸化により、アルケンからanti-Markovnikov型アルコールが合成できる。オキシ水銀化や水和反応ではMarkovnikov型アルコールしか得られないため、これと相補的に用いることができる。アルキンを原料として用いれば、カルボニル化合物が合成可能。
  • 最も基本的な反応剤であるボラン(BH3)は、二量体のジボランとして存在している。これは有毒気体であり、反応性もそれほど高くないため実際には用いにくい。
  • 単量体にする目的で配位子を結合させたボラン錯体(BH3・L)が現実には多用される。配位子としてはTHF、ジメチルスルフィド、アミンなどが代表的である。また、これらボラン錯体は溶液状態で市販されており、簡便に使用できる。
  • しかし、ボラン錯体を用いる場合は、ヒドロホウ素化の位置/立体/官能基選択性に難を示す場合が少なくない。この問題は、ボランに巨大な置換基を導入することで解決できる。BとHの電気陰性度にはそれほど差が無く、静電的要因よりはむしろ立体障害の影響が大きいためである。下に代表的な反応剤を示す。酸素官能基を持つカテコールボランやピナコールボランのヒドロホウ素化は遅く、遷移金属触媒を必要とする場合もある。

brown_hydroboration_4.gif

  • 置換基をキラルなものとした光学活性ボランを用いれば、光学活性アルコールも合成可能である。特に天然物から誘導されるジイソピノカンフェイルボラン(Ipc2BH)は実用性が高く、大量スケールの反応にも多用される。brown_hydroboration_5.gif
  • 近年ではパラジウムによるカップリング反応が発達し、ヒドロホウ素化→鈴木-宮浦クロスカップリングという連続的な変換によって、炭素-炭素結合を良好な収率で合成できるようになった。
  • Purdue大学のH.C.Brown教授は本反応の開発を含めた有機ホウ素化学発展の業績により、G.Wittigとともに1979年のノーベル化学賞を受賞している。

基本文献

Review

 

反応機構

①B-H結合の付加:まず、オレフィンとB上の空軌道が相互作用してπ錯体を形成する。その後協奏的なsyn付加機構で進む。
②B-C結合の酸化的開裂:まず、B上の空軌道に過酸化水素の共役塩基が配位する。その後ヒドロキシル基が脱離する形で転位反応を起こす。炭素原子上の立体化学は保持される。
brown_hydroboration_7.gif

反応例

  • 9-BBNによる位置選択性の改善例
    brown_hydroboration_3.gif

 

  • 過酸化水素の代わりに、ヒドロキシルアミンスルホン酸塩やクロラミンで酸化を行うとアミンが合成できる。
    brown_hydroboration_8.gif

 

  • トリアルキルホウ素化合物を一酸化炭素存在下高温で反応させると、アルキル基が全てカルボニル炭素に転位する。引き続き加水分解を行うことで、三級アルコールが合成可能。本法により通常合成の難しいかさ高いアルコールも合成できる。中間体ボラエポキシドからの転位は非常に遅いため、系中に水を添加しておくと3つめのアルキル基の転位が抑えられる。これにより2級アルコールもしくはケトンの合成も可能となる。また、LiBH4などのヒドリド源を共存させて反応を行うと、アルキル基が一つ転位したボラケトンの段階で還元され、第一級アルコールもしくはアルデヒドを得ることが出来る。以下にまとめる。
    brown_hydroboration_11.gif
    brown_hydroboration_10.gif

 

  • 触媒量のRh(I)存在下末端アルキンへヒドロホウ素化を行うと、通常とは異なるZ-ビニルホウ素化合物が合成できる。[1]ロジウムビニリデン中間体を経由すると考えられている。
    brown_hydroboration_6.gif

 

  • 条件によって位置選択性を完全に逆転させることも可能となっている。Rh触媒を用いるケースでは、ケトンなどよりもオレフィンが優先して反応する。配位性官能基を持つ基質において、Crabtree触媒を用いたヒドロホウ素化[2]を行うと、directing効果によるジアステレオ選択性が発現する。
    brown_hydroboration_13.gifbrown_hydroboration_14.gif

 

  • 巧みな立体選択的Hydroborationにより、岸らによってMonensinの全合成が達成されている。[3]
    アリル位反発を避けるよう最安定配座をとったとき、立体障害の少ない方からボランが付加するモデルで選択性は説明される。
    brown_hydroboration_9.gif
  • ピリジン・ボラン錯体を用いると、室温でヒドロホウ素化が進行する。ボラン・THF錯体とは異なり、一置換で反応が停止する。得られたホウ素化体はさまざまな有用化合物へと変換可能である。[4]
    brown_hydroboration_12.gif

 

  • B(C6F5)3添加による反応性向上[5]:Rh触媒を用いたヒドロホウ素化反応において、B(C6F5)3添加が反応性および位置選択性において劇的な影響を与える。B(C6F5)3は、ピナコールボランのヒドリドと複合体をつくり、酸化的付加を促進させる効果を示している。

2016-01-30_15-18-46

  • トランス選択的なヒドロホウ素化反応[6]:[Cp*Ru(MeCN)3]PF6(Cp*=η5-C5Me5) を触媒として用いると、内部アルキンへのヒドロホウ素化がトランス選択的に進行する。

ncontent

  • インドールの触媒的不斉ヒドロホウ素化反応[7]: 脱芳香族化を伴う不斉ヒドロホウ素化反応。2位にエステルをもつインドール類に対し、銅(I)触媒による脱芳香族不斉ヒドロホウ素化反応が高ジアステレオかつエナンチオ選択的に進行する

2016-01-30_15-13-50

 

 

実験手順

実験のコツ・テクニック

参考文献

  1.  Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.DOI: 10.1021/ja0002823
  2.  (a) Evans, D. A.; Fu, G. C.J. Am. Chem. Soc. 1991113, 4042. DOI: 10.1021/ja00010a083 (b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671. DOI: 10.1021/ja00043a009
  3. Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259. DOI: 10.1021/ja00495a064
  4. Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005127, 5766. DOI: 10.1021/ja043743j
  5. Lata, C. J.; Crudden, C. M. J. Am. Chem. Soc. 2010, 132,131. DOI:10.1021/ja904142m
  6. Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 14050. DOI: 10.1002/anie.201307584
  7. Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem. Int. Ed. 201554, 8809. DOI: 10.1002/anie.201502964

 

関連反応

 

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 04/07 08:32)
Amazon product information
Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1] nonane (9-BBN) (English Edition)

Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1] nonane (9-BBN) (English Edition)

Dhillon, Ranjit S.
¥29,135(as of 04/07 20:55)
Release date: 2007/05/01
Amazon product information

外部リンク

関連記事

  1. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hil…
  2. ニコラス反応 Nicholas Reaction
  3. アルコールのアルカンへの還元 Reduction from Al…
  4. ファン・ロイゼン試薬 van Leusen Reagent (T…
  5. モンサント酢酸合成プロセス Monsanto Process f…
  6. シュワルツ試薬 Schwartz’s Reagent…
  7. ジョーンズ酸化 Jones Oxidation
  8. スナップ試薬 SnAP Reagent

注目情報

ピックアップ記事

  1. 亜鉛クロロフィル zinc chlorophyll
  2. 個性あるジャーナル表紙
  3. 合格体験記:知的財産管理技能検定~berg編~
  4. アルミに関する一騒動 ~約20年前の出来事~
  5. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  6. どっちをつかう?:in spite ofとdespite
  7. 投票!2015年ノーベル化学賞は誰の手に??
  8. ホウ素アート錯体の1,2-メタレート転位 1,2-Metallate Rearrangement
  9. 兄貴達と化学物質
  10. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー